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After decomposing a multidimensional potential into a sum of products of simpler terms, an 
algorithm is presented for computing HU, where H is a sparse broad-banded Hamiltonian 
matrix and U is an N-vector. Unlike other methods, the new algorithm is explicitly vec- 
forizable. When implemented on a vector processor, the algorithm leads to greatly reduced 
computation times in applications of the recursive residue generation method to quantum 
dynamics problems. 6 1986 Academic Press, Inc. 

I. INTR~OUCT~~N 

The recursive residue generation method (RRGM) is a new approach to the 
calculation of time and temperature Green’s function matrix elements [ 1,2] and 
quantum statistical averages [ 31 for multidimensional effective Hamiltonians. 
Because the computation of eigenvectors is bypassed, extremely large (zero-order) 
basis sets (up to lo6 states) can be employed [4]; thus, accurate benchmark 
calculations can be performed for state-to-state transition probabilities or time 
correlation functions for systems which have heretofore been studied only via 
uncontrolled approximations. 

The most serious disadvantage of the RRGM to date has been substantial com- 
putation time and storage requirements. Within the context of current rapid 
development and accessibility of supercomputers, a straightforward solution to this 
problem is implementation of the approach on a vector machine. In favorable cases, 
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reduction of computation time by factors of 2&100 can be achieved compared to 
mainframe scalar machines, e.g., the CYBER 170/750. 

In the RRGM, Green’s function matrix elements are computed via the Lanczos 
algorithm [S], by operating repeatedly with the Hamiltonian matrix H on the 
current (“old”) recursion vector to obtain the new recursion vector: U,,, = HUold. 
Performing this step to generate a sequence of recursion vectors consumes about 
80% of the total CPU time in our previous versions of the RRGM program. We 
will focus on this critical part of the calculation in what follows. 

Three crucial problems must be addressed in numerical implementation of the 
RRGM on a vector machine. First, the Hamiltonian should be represented in some 
way in fast memory; direct storage for large basis sets is impractical, while recom- 
putation of matrix elements (or swapping from secondary storage) is unacceptable 
for an operation which must be repeated many times. Second, algorithms for the 
above step ( I!?‘,,, ) = HI YO,, ) ) must be devised to take advantage of vector 
processing capabilities. Third, an appropriate basis set (one which minimizes off- 
diagonal elements, and therefore reduces the required dimensionality of the basis 
set, but is still amenable to the first two requirements) must be selected. 

We will describe a set of techniques which efficiently addresses all of these con- 
cerns for a very general multidimensional Hamiltonian. The method is then applied 
to a live-mode coupled anharmonic system. Significant reductions in CPU time are 
obtained with the new algorithm. 

We will explicitly consider only a single electronic potential surface (and hence, 
vibrational/rotational motion); however, the method is easily generalized to treat 
problems involving more than one electronic level (optical spectroscopy, electron 
transfer, etc.). Calculations of this type will be reported in subsequent publications. 

In applications of the RRGM, we begin with the Nx N Hamiltonian matrix 
(actually a compacted version, as described later) and a starting recursion vector, 
U0. After performing M steps of Lanczos recursion, we have an A4 x M tridiagonal 
(Jacobi) matrix J, which is the representation of H in the space spanned by the M 
recursion vectors, U0, U1 ,..., I-J,-, . (However, it is only necessary to store U,_, 
and Uj in order to form U,, , .) Of course, each recursion vector is of length N; i.e., 
it is still an element of the N-dimensional space. It is important to appreciate that 
the physics developed by the A4 recursion vectors through J is not equivalent to 
carefully selecting M of the original basis functions in order to generate an Mx M 
block of the full Hamiltonian matrix. In order to clarify this, consider an example 
with N = 6. Assume the Hamiltonian matrix 

H= 

011000 
120100 
103010 
010401 
001050 
000106 
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and the starting vector 

u~=[l,o,o,o,o,o]“. 

Then the first three Krylov vectors (K, = H’U,) are 

K,= [l,O,O,O,O,O]“, 

K, = [0, 1, l,O, 0, Oltr, 

K, = [2, 2, 3, 1, 1, 11” 

and the Gram-Schmidt orthonormalized Krylov vectors (the Lanczos vectors) are 

u,=[1,0,0,0,0,0]” 

u, =(1/&W, 1, 19% O,Ol” 
U, = (&J7)[0, -4, +, 1, 1, lltr. 

Note that the 2-dimensional space spanned by (U,, U, ) contains three of the 
original basis states, while the 3-dimensional space spanned by (U,, U,, and U,) 
“feels” the full 6-dimensional space. The Hamiltonian is designing its M-dimen- 
sional subspace within the full N-space; since each Lanczos vector is a linear com- 
bination of the N basis vectors in no way is this equivalent to a subspace spanned 
by M of the original basis vectors. 

II. EFFECTIVE HAMILTONIAN AND BASIS SET SELECTION 

We begin with a quantum mechanical Hamiltonian H(q, ,..., qM, d/dql ,..., i3/dqM) 
where q1 ,..., q,+, is some canonical set of M coordinates. The determination of the 
optimal set of q’s for a complicated system is nontrivial, but will not be pursued 
here. 

A zeroth-order Hamiltonian, Z-Z,, is defined as a sum of one-dimensional 
operators, i.e., 

(1) 

In many cases, an adequate choice for H,, will be obvious; in others, care should be 
taken to renormalize strong off-diagonal terms in H. Direct product basis functions 
for HO 

In> = In, ...nM) = Int> In,>... bM> (2) 

are then defined by the relations 
hj In,> =~n, Ini>, 

i.e., the In,) are eigenfunctions of hj 

(3) 
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Each basis state In) must be assigned a label (location) in the N element column 
vector representing the wavefunction 1 Vu>. We compute the state label L by the 
algorithm 

L(n)= 1 + ; (n,-n,!m’“‘).I(j), (4) 
j= I 

where njmin) is the lowest quantum number in the basis for mode j, and 
j- 1 

I( j ) = n [nimax) - nim’“) + 1 ] 
k=l 

(5) 

with 1( 1) = 1, and n, tmax) is the largest quantum number in this basis. For example, 
in a three-mode problem (A4 = 3) with basis states nj= 0, 1, 2 in each mode, the 
N= 27 basis functions are indexed according to the formula (42) = 3, Z(3) = 9) 

L(n,, n2, n3) = 1 + n, + 3n, + 9n,. 

If A, is a standard operator (e.g., the harmonic oscillator or rigid rotor 
Hamiltonian), the eigenfunctions will have well known properties, and matrix 
elements can often be obtained from simple algebraic formulas. However, there is 
no real barrier to employing an arbitrary one-dimensional basis obtained from 
numerical diagonalization of a more complicated potential, because each 
diagonalization need be performed only once as a pre-processing step. This 
flexibility enables accurate treatment of a wide variety of physical problems (e.g., a 
dissociative state or highly anharmonic double well-coupled to several vibrational 
modes). 

We note here that it is possible to employ a nondirect product basis, thus allow- 
ing elimination of marginally relevant states via, e.g., energy criteria. This (and 
several other) improvements of the present algorithm will be reported elsewhere 
C61. 

III. REPRESENTATION OF HAS A SERIES OF ONE-DIMENSIONAL TRANSITION VECTORS 

To simplify the notation, we will assume that all derivatives are contained in Ho, 
so that we can define V(q) = H - Ho, where q = {ql ,..., q,,,,}. In addition, we assume 
that I’, a finite polynomial, is a sum of terms of the form 

V(q)= 2 At fi F,,(q) 
t=1 S=l 

where N, is the number of terms, M, is the number of steps (multiplicative 
operators) in term t, the A, are constants, and F,, is a sum of one-mode terms, 

NO 
F,,(q) = c flf’(qJ 

/= 1 
(7) 

581/64/l-15 
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This decomposition of V is very general and includes most situations of physical 
interest. As an example (which is relevant to the numerical results presented later) 
consider the five-mode, two-term potential, in which the second term has two mul- 
tiplicative steps (N, = 2, M, = 1, Mz = 2): 

V(q, . ..45)=cq.+Dq,(q*+q,+q,+q,), (8) 

so that 

A,=C, A,=D, 

t=l 

F,, =q: 

t=2 

Fz2 = q2 + q3 + q4 + q5 =f$:’ +f$;’ +f& +fi;‘. 

Thus, we can rewrite Eq. (8) as 

The motivation for this decomposition of V will become apparent in what follows. 
As noted previously, the time-consuming step in the Lanczos algorithm (on 

which RRGM is based) is multiplying Ii onto an old recursion vector to obtain a 
new recursion vector, 

U new = HUo,d. (9) 

Of course, the action of Ho on IJo,,, is trivial because the basis vectors are chosen to 
be eigenvectors of H,,: 

Ho In> =E” In> (10) 

where 

so that 

(11) 

Thus, the difficulty arises in efficiently implementing the operation VUold. 
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Consider first the effect of a function of one coordinate acting on a basis function 
In>=ln,> In,>..*ln,h 

f(e) In>=1 (mlf(4j)lnj) InI)“‘lrn>~~‘ln&f>~ 
m 

(12) 

Now if Uold = [C,, C2 ,..., C,]lr (where N is the total number of basis functions, in 
which the basis states are indexed according to Eqs. (4)-(5) is the column vector 
corresponding to 

I Yold) = f c, In>, 
?I=1 

then the following sequence of operations will generate f(qj)l !PO,, ): 

(1) Define a set of transition vectors Td,,,, TOW vectors of length N whose 
elements are (m = 0, l,..., for a harmonic basis) 

(Tdnj)m + 1 = (n)!“’ I f(e)1 njrn’ + Anj >, (13) 

where n!m) is the quantum number of basis function (m + 1) in the jth mode. In 
most caies, selection rules rigorously limit the number of transition vectors to only 
a few values of Ani, the shift index. Consider two examples, for four harmonic basis 
functions in mode-j (nj”l = 0, nji) = l,..., nj3) = 3): 

(a) f(qj) = qj. For this case, two transition vectors are required: 

Anj= -1: T,-~)=~(O,fi,fi,d) 
a 

Anj= +l: T,+,,=L(&,$,fi,O). 
Js 

(b) f(e) = 3qf. For this case, three transition vectors are required: 

Anj= -2: T(-z, = $CO, 0, ,h $, 

Anj = 0: T(o, = 31, 3, 5, 7) 

Anj= +2: Tt+z) = s(J5, ,/Z, 0,O). 

(14) 

(15) 

This step, which builds and stores all required transition vectors, is done only 
once, before initiating the Lanczos recursion, and does not significantly contribute 
to the CPU time. 

(2) The operation f(qj) 1 YO,d) is now done in three steps. 
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Step (a). For each value of Anj, compute the new vector Ddn,, whose mth 
element is defined by the Schur product 

UL,)m = (T&n. Wdw (16) 

An example will clarify this step. For “example (b)” above, let 1 YYold) -+ 
Uold = [C,, Cs, C3, C,]“. Then 

m=l m=2 m=3 m=4 

D,-,,=( 0, 0, 3&12c,, 3 &2c4 
q,, = ( 3/2c,, 912~~ 1 vc, 9 2wc4 1 

D (+2,= (3JzI2C,, 3 JG2cz, 0, 0 ) (17) 

Step (b). Shift the index of each element in D,, by an amount 

AL = An,. l(j ), (18) 

where I(j) is defined in Eq. (5). 
Step (c). The sum of the new vectors produced in this way is 1 Y’,,,). The 

sum is over the different values of An,. 
It is best to return to the example that we just used in Step (a). Ifi means mode 1 

in a “pure” one-dimensional example with four basis functions, then 
AL = Anj = 0, + 2. We first obtain from Eq. (17) three temporary column vectors: 

An= -2 An=0 An= +2 

As the final step, when these three vectors are added, we obtain the new vector 
representing 1 Y,,, ) : 

- 3/2C, -I- 3 j5/2C, 
9/2C, + 3 fi/2C4 
15/2c, + 3 &2c, (20) 

21/2C, -I- 3 ,,&J2Cz 

The above vector may be readily verified by noting that the first term in each row 
arises from the diagonal part of the 3q2 operator (at and a are the usual harmonic 
oscillator raising and lowering operators) 

( 3q2),iag = 3 (aa+ + a+U), 
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while the second term in each row results from either the dn = +2 or the An = -2 
component of 3q2: 

(3q2Lln= +2 = $ (a+)2, 

(3q2),,, -2 = $W2. 

Both parts of Step (2), because they involve multiplying or equivalencing of con- 
tiguous arrays, will explicitly vectorize. 

If we represent the two operations Schur product followed by index shift with an 
asterisk, then Steps (1) through (3) above produce the new vector: 

U new = 1 T, * Uo,ci. (21) 
4 

In some cases (e.g., polynomialf(q) in a harmonic oscillator basis) the number of 
nonzero T,, vectors will be rigorously limited by selection rules. Otherwise, it is 
possible to make useful approximations by truncating the sum in Eq. (21) at a 
small value of An,. Symmetry considerations may also reduce the number of 
required transition operations. 

We now consider the action of a product of two one-dimensional functions 
fi(ql)f2(q2) on IYO,,). Assume thatf, has N, transition vectors associated with it, 
and f2 has N2 vectors. A straightforward matrix representation of this operator in 
the direct product basis In ) would then contain N, . N2 codiagonals, thus requiring 
storage of N, N, . N elements and application of N, N2 transition vectors (N is the 
basis size). However, a much more efficient procedure is to act first with f2 on 
1 Yy,,,) and then act with fi on the intermediate result. This requires only 
(N, + N2) N storage elements and (N, + N,) transition operators! As N, or N, 
becomes large or as more terms appear in the product in Eq. (21), the saving of 
computation time and storage space becomes very significant. 

Similarly, if we want to apply a term of the form 

{ Cfi(41) +f2(q2)1 Luq3H I ~Yold), (22) 

the greatest efficiency is obtained by first acting with f3, and then applying f2 and fi 
to the resulting vector. 

The Schur product and index shift involved in the “* product” in Eq. (21) (which 
utilizes factorization of a Hamiltonian into sums and products of much simpler 
terms) is the reason for the efficiency of the present method on vector computers. 

IV. COMPUTATIONAL RFSULTS 

We consider a quartic oscillator coupled to four harmonic “bath” modes, with V 
given by Eq. (8). This generic Hamiltonian is similar to one studied previously 
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[ 1, 21, but contains the full quartic potential instead of only those anharmonic 
terms which are retained in the rotating wave approximation. 

For the potential in Eq. (8) there are five transition vectors associated with the 
first term (Cq;‘). They are associated with dn, = 0, f2, f4. In addition, there are 
ten transition vectors associated with the second term; they are associated with 
An = &l for the five coordinates q, ,..., q5. 

For the present study, we employ a harmonic oscillator basis set for all five 
modes. However, note that for large anharmonicity, it would be useful to incor- 
porate the quartic term in the zeroth-order Hamiltonian for the anharmonic 
oscillator, thus reducing the required number of basis functions for this mode. 

The purpose of the present study is to compare computation times on the 
CYBER 205 for code written as direct, nonvectorizing matrix multiplication with 
code utilizing the new algorithms described here. This comparison will illustrate the 
advantages of semantic vectorization. 

For this five-mode problem, with four basis functions in each mode (so that 
N = 55 = 1024), 290 different transition amplitudes were computed for 800 time 
steps. The original code, not employing the algorithm described here, executed in 
1050 sec. on the CYBER 170/750. When executed with the automatic vectorizer on 
the two-vector pipeline CYBER 205, the execution time dropped by a factor of 
seven to 150 sec. With the new algorithm, the execution time dropped by another 
factor offour to 35 sec. The new code thus executed about 30 times faster on the 
205 compared to the original code on the 170/750. 

V. CONCLUSION 

The preceding discussion gives considerable insight into the types of problems for 
which the RRGM algorithm is useful. First, if the Hamiltonian matrix is dense, 
computation times for the Lanczos procedure will become extremely large; unless 
time is of no concern, it seems unlikely that a full matrix too large to be 
diagonalized by conventional methods can be profitably studied by the RRGM. An 
exception occurs if only a few Green’s function matrix elements are required; then, 
the Lanczos procedure will be preferable independent of the structure of the 
Hamiltonian matrix. 

On the other hand, a sparse matrix with a very small bandwidth (the trivial case 
is a tridiagonal matrix) is a quite suitable form for attack via standard banded 
matrix techniques. Again, it seems unlikely that a matrix too large to store in 
banded form would be amenable to study via RRGM without unacceptable 
computational expenditures. 

The interesting cases are then precisely those discussed in this paper: matrices 
which are sparse but possess a large bandwidth. This situation is a direct con- 
sequence of representing a multidimensional potential in a direct product of one- 
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dimensional basis functions. It is thus the typical situation for realistic anharmonic 
potentials in molecular systems. 

For potentials which can be decomposed into sums of products of simpler terms, 
Eq. (6), the new explicitly vectorizable algorithm presented here leads to a 
significant reduction in CPU time on current vector computers. As a result, the 
RRGM should be applicable to a broader range of chemically interesting problems. 
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